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Motivation and Background

Part I
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Our Starting Point: Image Denoising

Many image denoising algorithms can be cast as the 
minimization of an energy function of the form
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Original Image
𝐗

White Gaussian Noise
𝐄

Noisy Image
𝐘

Relation to
measurements

Prior or
regularization
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Leading Image Denoising Methods…
are built upon powerful patch-based local models:
• K-SVD: sparse representation modeling of image patches

[Elad & Aharon, ‘06]
• BM3D: combines sparsity and self-similarity

[Dabov, Foi, Katkovnik & Egiazarian ‘07]
• EPLL: uses GMM of the image patches

[Zoran & Weiss ‘11]
• CSR: clustering and sparsity on patches

[Dong, Li, Lei & Shi ‘11]
• MLP: multi-layer perceptron

[Burger, Schuler & Harmeling ‘12]
• NCSR: non-local sparsity with centralized coefficients

[Dong, Zhang, Shi & Li ‘13]
• WNNM: weighted nuclear norm of image patches

[Gu, Zhang, Zuo & Feng ‘14]
• SSC–GSM: nonlocal sparsity with a GSM coefficient model

[Dong, Shi, Ma & Li ‘15]
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• Assumes every patch a linear combination of a few columns, called 
atoms, from a matrix that is termed a dictionary.

• The operator 𝐑i extracts
the i-th 𝑛-dimensional patch
from 𝐗 ∈ ℝ𝑁.

• Sparse coding:
𝑛

𝑚 > 𝑛

𝑛

𝐑i𝐗

𝛄i

=𝛀𝐏0 : min
𝛄i

𝛄i 0 s. t. 𝐑i𝐗 = 𝛀𝛄i

The Sparse-Land Model
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i-th location

𝑁

𝑛𝐑i =

* 𝐑i for 1D signals



Patch Denoising
Given a noisy patch 𝐑i𝐘, solve
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Greedy methods such as 
Orthogonal Matching Pursuit 

(OMP) or Thresholding

𝐏0
ϵ :  𝛄i = argmin

𝛄i

𝛄i 0 s. t. 𝐑i𝐘 − 𝛀𝛄i 2 ≤ ϵ

Convex relaxations such 
as Basis Pursuit (BP)

Clean patch: 𝛀 𝛄i
𝐏0 and (𝐏0

ϵ) are hard to solve

𝐏1
ϵ : min

𝛄i
𝛄i 1 + ξ 𝐑i𝐘 − 𝛀𝛄i 2
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Consider this Algorithm [Elad & Aharon, ‘06]
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Noisy Image Reconstructed Image

Denoise
each patch

Using OMP

Initial Dictionary Using K-SVD

Update the 
dictionary

 𝐗 = argmin
𝐗, 𝛄i i,𝛀

1

2
𝐗 − 𝐘 2

2 + λ 

i

𝛄i 0 + μ 𝐑i𝐗 − 𝛀𝛄i 2
2

Prior or regularization
Relation to

measurements



What is Missing?
• Over the years, many researchers kept revisiting

this algorithm and the line of thinking behind it,
with a clear feeling that the final word has not
been said, and that key features are still lacking. 

• What is missing? Here is what our group thought of…
• A multi-scale treatment [Ophir, Lustig & Elad ‘11] [Sulam, Ophir & Elad ‘14] 

[Papyan & Elad ‘15]

• Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad ‘14]

• Pushing to better agreement on the overlaps [Romano & Elad ‘13] 
[Romano & Elad ‘15]

• Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15] 

• Beyond all these, a key part that is missing is a theoretical backbone
for the local model as a way to characterize the unknown image.
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Beyond all these, a key part that is missing is a 
theoretical backbone for the local model as a 
way to characterize the global unknown image



Missing Theoretical Backbone?
• The core global-local model assumption on 𝐗:

• Questions to consider:
I. Who are those signals belonging to this model? Do they exist? 

II. Under which conditions on 𝛀 would this model be feasible? 

III. How does one sample from this model? 

IV. How should we perform pursuit properly (and locally) under
this model? 

V. How should we learn 𝛀 if this is indeed the model?
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Every patch in the unknown signal is expected to have a 
sparse representation w.r.t. the same dictionary 𝛀

∀i 𝐑i𝐗 = 𝛀𝛄i where 𝛄i 0 ≤ k



In this Talk
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Limitations of 
patch averaging

Convolutional Sparse 
Coding (CSC) model

Theoretical 
study of CSC

Multi-Layer Convolutional 
Sparse Coding (ML-CSC)

Convolutional neural 
networks (CNN)

Fresh view of CNN through 
the eyes of sparsity
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Convolutional
Sparse Coding

Part II

Working Locally Thinking Globally-Part 𝐈:
Theoretical Guarantees for Convolutional Sparse Coding

Working Locally Thinking Globally-Part 𝐈𝐈:
Stability and Algorithms for Convolutional Sparse Coding

Vardan Papyan, Jeremias Sulam and Michael Elad



Convolutional Sparsity Assumes…
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𝐗

= + + + + + + +



• Formally, consider the following global sparsity-based model

• 𝐂i ∈ ℝ𝑁×𝑁 is a banded and Circulant matrix containing a single 
atom with all of its shifts.

• 𝚪i ∈ ℝ𝑁 are its corresponding coefficients.

𝐗 = 

i=1

𝑚

𝐂i𝚪i

Convolutional Sparse Representation
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𝑛

𝑁

𝐂i =

𝐗 =  

i=1

𝑚

𝐂i𝚪i = 𝐃𝚪



Two Interpretations
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𝐂1 𝐂2 𝐂3 =

𝐃 = 𝑛

𝐃L

𝑚



• This model has been used in the past [Lewicki & Sejnowski ‘99]
[Hashimoto & Kurata, ‘00]

• Most works have focused on solving efficiently its associated pursuit, 
called convolutional sparse coding, using the BP algorithm.

• Several applications were demonstrated:
• Inpainting [Heide, Heidrich & Wetzstein ‘15]

• Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang ‘15]

• Pattern detection in images and the analysis of instruments in music 
signals [Mørup, Schmidt & Hansen ’08]

• However, little is known regrading its theoretical aspects.
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𝐏1
ϵ : min

𝚪
𝚪 1 + ξ 𝐘 − 𝐃𝚪 2

2 Convolutional
dictionary



Classical Sparse Theory (Noiseless)
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Mutual Coherence: μ 𝐃 = max
i≠j

|di
Tdj|

[Donoho & Elad ‘03]

For a signal 𝐗 = 𝐃𝚪, if 𝚪 0 <
1

2
1 +

1

μ 𝐃
then

this solution is necessarily the sparsest.

[Donoho & Elad ‘03]

The OMP and BP are guaranteed to recover the true 

sparse code assuming that 𝚪 0 <
1

2
1 +

1

μ 𝐃
.

[Tropp ‘04]
[Donoho & Elad ‘03]



• Assuming that 𝑚 = 2 and 𝑛 = 64 we have that μ(𝐃) ≥ 0.063.

• As a result, uniqueness and success of pursuits is guaranteed as
long as

𝚪 0 <
1

2
1 +

1

μ(𝐃)
≤
1

2
1 +

1

0.063
≈ 8

• This is a very pessimistic result!

The Need for a Theoretical Study
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Less than 8 
non-zeros 

GLOBALLY!!!



=

𝐑i𝐗 = 𝛀𝛄i

𝑛

(2𝑛 − 1)𝑚

𝐑i𝐗

𝛄i

The Local Representation
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𝐗 = 𝐃𝚪
stripe-dictionary

Adjacent representations 
overlap, as they skip by 𝑚
items as we sweep through 
the patches of 𝐗

stripe vector



=

𝐑i𝐗 = 𝛀𝛄i

𝑛

(2𝑛 − 1)𝑚

𝐑i+1𝐗

𝛄i+1

The Local Representation
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𝐗 = 𝐃𝚪
stripe-dictionary

Adjacent representations 
overlap, as they skip by 𝑚
items as we sweep through 
the patches of 𝐗

stripe vector



Inherent Positive Properties
A clear global model with a shift invariant local prior.

• Every patch has a sparse representation w.r.t. to a local dictionary 𝛀.

No disagreement on the patch overlaps.

Related to the current common practice of patch averaging.

• The signal can be written as

𝐗 = 𝐃𝚪 =
1

𝑛
 

i

𝐑i
T𝛀𝛄i

• 𝐑i
T puts the patch 𝛀𝛄i in the i-th location in the 𝑁-dimensional vector.

• The patch averaging scheme solves the sparse coding problem 
independently for every patch while convolutional sparse coding seeks 
for the representations of all the patches together.
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The Main Questions We Aim to Address:

I. Uniqueness of the solution to this problem ?

II. Guaranteed recovery of the solution via global OMP/BP ?

𝑚 = 2

𝛄i

The ℓ0,∞ Norm and the 𝐏0,∞ Problem
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𝐏0,∞ : min
𝚪

𝚪 0,∞
s s. t. 𝐗 = 𝐃𝚪

𝚪 0,∞
s = max

i
𝛄i 0

A global sparse vector is likely if it can 
represent every patch in the signal sparsely.



Uniqueness via Mutual Coherence
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Theorem: If a solution 𝚪 is found for (𝐏0,∞) such that:

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃

Then this is necessarily the unique globally optimal 
solution to this problem.

We should be excited about this result and later ones because 
they pose a local constraint for a global guarantee, and as such, 
they are far more optimistic compared to the global guarantees 

8 non-zeros per stripe can result in 
0.06 ⋅ 𝑁 non-zeros globally

𝐏0,∞ : min
𝚪

𝚪 0,∞
s s. t. 𝐗 = 𝐃𝚪



Recovery Guarantees

Lets solve this problem via OMP or BP, applied globally
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Theorem: If a solution 𝚪 of (𝐏0,∞) satisfies:

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃

Then global OMP and BP are guaranteed to find it.

𝐏0,∞ : min
𝚪

𝚪 0,∞
s s. t. 𝐗 = 𝐃𝚪

Both OMP and BP do not assume local sparsity but still succeed. 
One could propose algorithms that rely on this assumption



From Ideal to Noisy Signals
• So far, we have assumed an ideal signal 𝐗 = 𝐃𝚪.

• However, in practice we usually have 𝐘 = 𝐃𝚪 + 𝐄 where 𝐄 is due to 
noise or model deviations.

• To handle this, we redefine our problem as:

• The Main Questions We Aim to Address:
I. Stability of the solution to this problem ?

II. Stability of the solution obtained via global OMP/BP ?

III. The same recovery done via local operations ?
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𝐏0,∞
ϵ : min

𝚪
𝚪 0,∞

s s. t. 𝐘 − 𝐃𝚪 2 ≤ ϵ



Theorem: If the true representation 𝚪 satisfies

𝚪 0,∞
s = k <

1

2
1 +

1

μ 𝐃

Then a solution  𝚪 for (𝐏0,∞
ϵ ) must be close to it

 𝚪 − 𝚪
2

2
≤

4ϵ2

1 − δ2k
≤

4ϵ2

1 − 2k − 1 μ 𝐃

Stability of 𝐏0,∞
ϵ via Stripe-RIP
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Definition: 𝐃 is said to satisfy Stripe-RIP with constant δk if:

1 − δk 𝚫 2
2 ≤ 𝐃𝚫 2

2 ≤ 1 + δk 𝚫 2
2

for any vector 𝚫 with 𝚫 0,∞
s = k.

δk ≤ (k − 1)μ(𝐃)

≤
4ϵ2

1 − 2k − 1 μ 𝐃

𝐏0,∞
ϵ : min

𝚪
𝚪 0,∞

s s. t. 𝐘 − 𝐃𝚪 2 ≤ ϵ  𝚪

[Candes & Tao ‘05]



Local Noise Assumption
• Thus far, our analysis relied on the local sparsity of the underlying 

solution 𝚪, which was enforced through the ℓ0,∞ norm.

• In what follows, we present stability guarantees for both OMP and BP 
that will also depend on the local energy in the noise vector E.

• This will be enforced via the ℓ2,∞ norm, defined as:
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𝐄 2,∞
p

= max
i

𝐑i𝐄 2



Stability of OMP
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Theorem: If 𝐘 = 𝐃𝚪 + 𝐄 where

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃
−

1

μ 𝐃
⋅
𝐄 2,∞

p

Γmin

Then OMP run for 𝚪 0 iterations will

1. Find the correct support

2. 𝚪OMP − 𝚪 2
2 ≤

𝐄 2
2

1− 𝚪 0,∞
s −1 μ 𝐃



Stability of Lagrangian BP
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Theorem: For 𝐘 = 𝐃𝚪 + 𝐄, if ξ = 4 𝐄 2,∞
p

and

𝚪 0,∞
s <

1

3
1 +

1

μ 𝐃

Then we are guaranteed that

1. The support of 𝚪BP is contained in that of Γ

2. 𝚪BP − 𝚪 ∞ ≤ 7.5 𝐄 2,∞
p

3. Every entry greater than 7.5 𝐄 2,∞
p

will be found

4. 𝚪BP is unique.

Proof relies on the work of [Tropp ‘06]

𝐏1
ϵ : 𝚪BP = min

𝚪

1

2
𝐘 − 𝐃𝚪 2

2 + ξ 𝚪 1
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Stability of Lagrangian BP

28

Theorem: For 𝐘 = 𝐃𝚪 + 𝐄, if ξ = 4 𝐄 2,∞
p

and

𝚪 0,∞
s <

1

3
1 +

1

μ 𝐃

Then we are guaranteed that

1. The support of 𝚪BP is contained in that of Γ

2. 𝚪BP − 𝚪 ∞ ≤ 7.5 𝐄 2,∞
p

3. Every entry greater than 7.5 𝐄 2,∞
p

will be found

4. 𝚪BP is unique.

Theoretical foundation for 
recent works tackling the 

convolutional sparse coding 
problem via BP

[Bristow, Eriksson & Lucey ‘13]
[Wohlberg ‘14]

[Kong & Fowlkes ‘14]
[Bristow & Lucey ‘14]

[Heide, Heidrich & Wetzstein ‘15]
[Šorel & Šroubek ‘16]

Proof relies on the work of [Tropp ‘06]

𝐏1
ϵ : 𝚪BP = min

𝚪

1

2
𝐘 − 𝐃𝚪 2

2 + ξ 𝚪 1



• Thus far, we have seen that while the CSC is a global model, its 
theoretical guarantees rely on local properties. Yet this global-local
relation can also be exploited for practical purposes. Next, we show 
how one can solve the global BP problem using only local operations.

• Iterative Soft Thresholding [Blumensath & Davies ‘08]:

• This can be equally written as:
∀𝑖 𝛂i

t = 𝒮ξ/𝑐 𝛂i
t−1 +𝐃L

T 𝐑i(𝐘 − 𝐃𝚪t−1)

Global Pursuit via Local Processing
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local residuallocal dictionarylocal sparse code

Gradient step

Projection 
onto 𝐋1 ball

𝐏1
ϵ : 𝚪BP = min

𝚪

1

2
𝐘 − 𝐃𝚪 2

2 + ξ 𝚪 1

𝛂i

𝚪

⋮

* c > 0.5 λmax(𝐃
T𝐃)

global aggregation

𝚪t = 𝒮ξ/𝑐 𝚪t−1 +
1

c
𝐃T 𝐘 − 𝐃𝚪t−1



Details:

• Signal length: 𝑁 = 300

• Patch size: 𝑛 = 25

• Unique atoms: 𝑝 = 5

• Global sparsity: 𝑘 = 40

• Number of iterations: 400

• Lagrangian: ξ = 4 𝐄 2,∞
p

Simulation
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Partial Summary of CSC
• What we have seen so far is a new way to analyze the global CSC 

model using local sparsity constrains. We proved:

Uniqueness of the solution to the noiseless problem.

Stability of the solution to the noisy problem.

Guarantee of success and stability of both OMP and BP.

• We obtained guarantees and algorithms that operate locally while 
claiming global optimality.

32



Part III
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Going Deeper
Convolutional Neural Networks Analyzed via

Convolutional Sparse Coding

Vardan Papyan, Yaniv Romano and Michael Elad



CSC and CNN
• There seems to be a relation between CSC and CNN:

• Both have a convolutional structure.

• Both use a data driven approach for training their model.

• The most popular non-linearity employed in CNN, called ReLU, is 
known to be connected to sparsity.

• In this part, we aim to make this connection clear in order to provide 
a theoretical understanding of CNN through the eyes of sparsity.

• But first, a short review of CNN…
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CNN
ReLU ReLU

ReLU z = max 0, z

𝐗

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]
[He, Zhang, Ren & Sun ‘15]
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CNN

No pooling stage:
• Can be replaced by a convolutional layer with increased stride without loss 

in performance [Springenberg, Dosovitskiy, Brox & Riedmiller ‘14]

• The current state-of-the-art in image recognition does not use it
[He, Zhang, Ren & Sun ‘15]
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𝑁

𝑁

𝐗 𝑚1

𝑁

𝑁

𝑛0

𝑛0 𝐖1

𝑚2

𝑁

𝑁
𝑛1

𝑛1

𝐖2



𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗

Mathematically...
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𝐙2 ∈ ℝ𝑁𝑚2

𝑚1

ReLU ReLU

𝐖2
T ∈ ℝ𝑁𝑚2×𝑁𝑚1

𝑛1𝑚1
𝑚2

𝐖1
T ∈ ℝ𝑁𝑚1×𝑁

𝑚1

𝑛0

𝐛1 ∈ ℝ𝑁𝑚1

𝐛2 ∈ ℝ𝑁𝑚2

𝐗 ∈ ℝ𝑁



min
𝐖i , 𝐛i ,𝐔

 

j

ℓ h 𝐗j , 𝐔, 𝑓 𝐗, 𝐖i , 𝐛i

• Consider the task of classification, for example.

• Given a set of signals 𝐗j j
and their corresponding labels h 𝐗j j

, 

the CNN learns an end-to-end mapping.

Training Stage of CNN

38

Output of last layerClassifierTrue label



Back to CSC
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𝐗 ∈ ℝ𝑁

𝑚1

𝑛0

𝐃1 ∈ ℝ𝑁×𝑁𝑚1

𝑛1𝑚1

𝑚2

𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2

𝑚1

𝚪1 ∈ ℝ𝑁𝑚1

𝚪1 ∈ ℝ𝑁𝑚1

𝚪2 ∈ ℝ𝑁𝑚2

Convolutional sparsity assumes 
an inherent structure is present 
in natural signals.

Similarly, the representations 
themselves could also be assumed 
to have such a structure.

Multi-Layer CSC (ML-CSC)



Deep Coding and Learning Problems
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𝐃𝐋𝐏λ : min
𝐃i i=1

K ,𝐔
 

j

ℓ h 𝐗j , 𝐔, 𝐃𝐂𝐏
⋆ 𝐗j, 𝐃𝐢

𝐃𝐂𝐏λ : Find a set of representations satisfying
𝐗 = 𝐃1𝚪1 𝚪1 0,∞

s ≤ λ1
𝚪1 = 𝐃2𝚪2 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞
s ≤ λK

Deepest representation 
obtained by solving the 

DCP

ClassifierTrue label
Task driven dictionary learning
[Mairal, Bach & Ponce ‘12]



𝐃𝐋𝐏λ
ℰ : min

𝐃i i=1
K ,𝐔

 

j

ℓ h 𝐗j , 𝐔, 𝐃𝐂𝐏
⋆ 𝐘j, 𝐃𝐢

𝐃𝐂𝐏λ
ℰ : Find a set of representations satisfying
𝐘 − 𝐃1𝚪1 2 ≤ ℰ0 𝚪1 0,∞

s ≤ λ1
𝚪1 −𝐃2𝚪2 2 ≤ ℰ1 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 − 𝐃K𝚪K 2 ≤ ℰK−1 𝚪K 0,∞
s ≤ λK

Deep Coding and Learning Problems

41

Deepest representation 
obtained by solving the 

DCP

ClassifierTrue label



The simplest pursuit in the sparse representation is the thresholding 
algorithm. Given an input signal 𝐗, this operates by:

42

ReLU = Soft
Nonnegative 
Thresholding
[Fawzi, Davies &

Frossard ‘15]

𝐃T𝐗 𝒫𝛽 𝐃T𝐗

Restricting the 
coefficients to be 
nonnegative does 

not restrict the 
expressiveness of 

the model



• Layered thresholding (LT):

• Forward pass of CNN:

 𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐗 𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐗 𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐗

Consider this for Solving the DCP
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Estimate 𝚪1 via the thresholding algorithm

Estimate 𝚪2 via the thresholding algorithm

𝐃𝐂𝐏λ : Find a set of 
representations satisfying
𝐗 = 𝐃1𝚪1 𝚪1 0,∞

s ≤ λ1
𝚪1 = 𝐃2𝚪2 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞
s ≤ λK

The layered (soft nonnegative) thresholding 
and the forward pass algorithm are equal !!!

𝑓 𝐗 = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗



• DLP:

min
𝐃i i=1

K ,𝐔
 

j

ℓ h 𝐗j , 𝐔, 𝐃𝐂𝐏
⋆ 𝐗j, 𝐃𝐢

• CNN training:

min
𝐖i , 𝐛i ,U

 

j

ℓ h 𝐗j , 𝐔, 𝑓 𝐗, 𝐖i , 𝐛i

Consider this for Solving the DLP
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Estimate via the layered thresholding algorithm

The problem solved by the training stage of CNN and 
the DLP are equal assuming that the DCP is 

approximated via the layered thresholding algorithm

min
𝐃i i=1

K ,𝐔
 

j

ℓ h 𝐗j , 𝐔, 𝐃𝐂𝐏
⋆ 𝐗j, 𝐃𝐢



𝐘

Theoretical Questions
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M A
 𝚪i i=1

K
𝐗 = 𝐃1𝚪1
𝚪1 = 𝐃2𝚪2

⋮
𝚪K−1 = 𝐃K𝚪K

𝚪i is 𝐋0,∞ sparse

𝐃𝐂𝐏λ
ℰ

Layered 
Thresholding

(Forward Pass)

Other?

𝐗



Uniqueness of 𝐃𝐂𝐏λ

47

Theorem: If a set of solutions 𝚪i i=1
K is 

found for (𝐃𝐂𝐏λ) such that:

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i

Then these are necessarily the unique 
solution to this problem.

𝐃𝐂𝐏λ : Find a set of representations satisfying
𝐗 = 𝐃1𝚪1 𝚪1 0,∞

s ≤ λ1
𝚪1 = 𝐃2𝚪2 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞
s ≤ λK

Is this set 
unique?

The feature maps CNN aims to recover are unique

[Papyan, Sulam & Elad ‘16]



Stability of 𝐃𝐂𝐏λ
ℰ

49

Theorem: If the true representations 𝚪i i=1
K satisfy

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i

And the error thresholds for (𝐃𝐂𝐏λ
ℰ) are

ℰ0
2 = 𝐄 2

2, ℰi
2 =

4ℰi−1
2

1 − 2 𝚪i 0,∞
s − 1 μ 𝐃i

Then the set of solutions  𝚪i i=1

K
obtained by solving 

this problem must be close to the true ones

 𝚪i − 𝚪i 2

2
≤ ℰi

2

The problem CNN aims to solve is 
stable under certain conditions

[Papyan, Sulam & Elad ‘16]



Stability of LT
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Theorem: If 𝚪i 0,∞
s <

1

2
1 +

1

μ 𝐃i
⋅
𝚪i
min

𝚪i
max −

1

μ 𝐃i
⋅

εL
i−1

𝚪i
max

Then the layered hard thresholding will*

1. Find the correct supports

2. 𝚪i
LT − 𝚪i 2,∞

p
≤ εL

i

We have defined εL
0 = 𝐄 2,∞

p
and

εL
i = 𝚪i 0,∞

p
⋅ εL

i−1 + μ 𝐃i 𝚪i 0,∞
s − 1 𝚪i

max + βi

The stability of the forward pass is guaranteed if the 
underlying representations are locally sparse and 

the noise is locally bounded

soft

* For correctly chosen thresholds



Limitations of the Forward Pass
• The stability analysis reveals several inherent limitations of the 

forward pass algorithm:
• Even in the noiseless case, it is incapable of recovering the solution of 

the DCP problem.

• Its success depends on the ratio 𝚪i
min / 𝚪i

max . This is a direct 
consequence of the forward pass algorithm relying on the simple 
thresholding operator.

• The distance between the true sparse vector and the estimated one 
increases exponentially as function of the layer depth.

• In the next and final part we propose a new algorithm attempting to 
solve some of these problems.
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What Next?

Part IV

Convolutional Neural Networks Analyzed via
Convolutional Sparse Coding

Vardan Papyan, Yaniv Romano and Michael Elad



Layered Basis Pursuit (Noiseless)
• Our Goal:

• Layered thresholding:  𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐗

• Thresholding is the simplest pursuit known in the field of sparsity.

• Layered BP:

55

𝚪2
LBP = min

𝚪2
𝚪2 1 s. t. 𝚪1

LBP = 𝐃2𝚪2

𝚪1
LBP = min

𝚪1
𝚪1 1 s. t. 𝐗 = 𝐃1𝚪1

𝐃𝐂𝐏λ : Find a set of representations satisfying
𝐗 = 𝐃1𝚪1 𝚪1 0,∞

s ≤ λ1
𝚪1 = 𝐃2𝚪2 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞
s ≤ λK

Deconvolutional networks
[Zeiler, Krishnan, Taylor & 

Fergus ‘10]



• Our Goal:

The layered BP can retrieve the underlying representations in the 
noiseless case, a task in which the forward pass fails.

Its success does not depend on the ratio 𝚪i
min / 𝚪i

max .

Guarantee for Success of Layered BP
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Theorem: If a set of solutions 𝚪i i=1
K of (𝐃𝐂𝐏λ) satisfy

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i

Then the layered BP is guaranteed to find them.

𝐃𝐂𝐏λ : Find a set of representations satisfying
𝐗 = 𝐃1𝚪1 𝚪1 0,∞

s ≤ λ1
𝚪1 = 𝐃2𝚪2 𝚪2 0,∞

s ≤ λ2
⋮ ⋮

𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞
s ≤ λK

[Papyan, Sulam & Elad ‘16]



Stability of Layered BP

58

Theorem: Assuming that

𝚪i 0,∞
s <

1

3
1 +

1

μ 𝐃i

Then we are guaranteed that*

1. The support of 𝚪i
LBP is contained in that of 𝚪i

2. 𝚪i
LBP − 𝚪i 2,∞

≤ εL
i

3. Every entry in 𝚪i greater than εL
i / 𝚪i 0,∞

p
will be found

εL
i = 7.5i 𝐄 2,∞  

j=1

i

𝚪j 0,∞

p

* For correctly chosen ξi i=1
K

[Papyan, Sulam & Elad ‘16]



𝚪2
t = 𝒮ξ2/c2 𝚪2

t−1 +
1

c2
𝐃2
T  𝚪1 − 𝐃2𝚪2

t−1

𝚪1
t = 𝒮ξ1/c1 𝚪1

t−1 +
1

c1
𝐃1
T 𝐘 − 𝐃1𝚪1

t−1

𝚪2
LBP = min

𝚪2

1

2
𝚪1
LBP −𝐃2𝚪2 2

2
+ ξ2 𝚪2 1

𝚪1
LBP = min

𝚪1

1

2
𝐘 − 𝐃1𝚪1 2

2 + ξ1 𝚪1 1

Layered Iterative Thresholding
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* ci > 0.5 λmax(𝐃i

T𝐃i)

Layered
BP

Layered
IT

Can be seen as a 
recurrent neural 

network
[Gregor & LeCun ‘10]



Conclusion

60

We described the limitations of patch based processing as a 
motivation for the CSC model.

We then presented a theoretical study of this model both in a 
noiseless and a noisy setting.

A multi-layer extension for it, tightly connected to CNN, was 
proposed and similarly analyzed.

Finally, an alternative to the forward pass algorithm was 
presented.

Future Work: leveraging theoretical insights
into practical implications



Questions?
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